この記事では、InterSystems IRIS プラットフォームを使用して基本的な IMAP クライアントを記述する方法を説明します。 はじめに IMAP の概要を確認してから、本題の IMAP コマンドとクライアント実装について説明します。 最後に、IRIS 相互運用性アプリケーションでこの IMAP クライアントを簡単に使用します。

0 0
0 297

更新: 開発者プレビュー・リリース3が公開されました

これはインターシステムズにとって初めての開発者プレビュー・リリースであるため、これらがどのようなものであるかを説明します。 開発者プレビュー・プログラムは、従来のIRISプレビュー・プログラムを強化したもので、約2週間ごとにリリースされ、準備が整うと機能が追加されます。 これにより、機能や機能拡張に関するフィードバックを得ることができます。 2022.1に向けた機能拡張のリストは以下の通りです。これらは最初の開発者プレビューには含まれていません。 これらは今後数週間のうちに公開される予定です。

一般公開に先立ち、皆様からのご意見をお待ちしています。より良い製品を一緒に作っていくために、開発者コミュニティを通じてフィードバックを共有してください。

InterSystems IRIS Data Platform 2022.1 は、エクステンデッド・メンテナンス (EM) リリースです。2022.1 には、前回の EM リリースである 2021.1 以降、継続的デリバリー (CD) リリースである 2021.2 で追加された多くの重要な新機能や拡張機能が追加されています。これらの機能強化の概要については、2021.2 のリリース・ノートをご参照ください。

0 0
0 158

キーワード: IRIS、IntegratedML、Flask、FastAPI、Tensorflow Serving、HAProxy、Docker、Covid-19

目的:

過去数か月に渡り、潜在的なICU入室を予測するための単純なCovid-19 X線画像分類器やCovid-19ラボ結果分類器など、ディープラーニングと機械学習の簡単なデモをいくつか見てきました。 また、ICU分類器のIntegratedMLデモ実装についても見てきました。 「データサイエンス」の旅路はまだ続いていますが、「データエンジニアリング」の観点から、AIサービスデプロイメントを試す時期が来たかもしれません。これまでに見てきたことすべてを、一式のサービスAPIにまとめることはできるでしょうか。 このようなサービススタックを最も単純なアプローチで達成するには、どういった一般的なツール、コンポーネント、およびインフラストラクチャを活用できるでしょうか。

対象範囲

対象:

ジャンプスタートとして、docker-composeを使用して、次のDocker化されたコンポーネントをAWS Ubuntuサーバーにデプロイできます。

1 0
0 375
記事
· 2022年2月9日 2m read
IRIS-NativeAPI-Nodejs-compact (jp)

これは、前回の「DockerマイクロサーバーとしてのIRIS Native APIを使用するWebSocketクライアントJS」のフォローアップです。

すべてのピースが1つのDockerイメージにまとめられたため、インストールがはるかに簡単になりました。
作業が楽になります。 ただしもちろん、マイクロサービスの原則はわかりにくくなくなっています。
オールインワンのバンドルパッケージであるため、 コンパクトになっています。

0 0
0 211

キーワード: Pandasデータフレーム、IRIS、Python、JDBS

目的

PandasデータフレームはEDA(探索的データ分析)に一般的に使用されるツールです。 MLタスクは通常、データをもう少し理解することから始まります。 先週、私はKaggleにあるこちらのCovid19データセットを試していました。 基本的に、このデータは1925件の遭遇の行と231列で構成されており、タスクは、患者(1つ以上の遭遇レコードにリンク)がICUに入室するかどうかを予測するものです。 つまりこれは、いつものようにpandas.DataFrameを使用して、まず簡単にデータを確認する、通常の分類タスクです。

0 0
0 215
これはIRIS 2020.2で動作するコーディングの例です 
最新バージョンとは同期していません。
また、InterSystemsのサポートによるサービスはありません

動作中のデモを確認できるデモビデオを以下で公開しています。https://youtu.be/dSV-0RJ5Olg

皆さんこんにちは
完全に新しいIRISイメージとたった4行のDockerコマンドを使って実行するイメージを使ってマイクロサービスのデモを行いましょう。
2020年6月1日 - rcc

すべてのパーツを1つのコンテナイメージにまとめたコンパクトなオールインワンバージョンが公開されました。
詳細はこちら: IRIS-NativeAPI-Nodejs-compact
2020年5月24日 - rcc

Dockerを使った簡易インストールを追加しました。コンテキストを参照
2020年5月25日 - rcc

Linux & Windowsに最適な検証済みの強化スクリプトはこちら
https://github.com/rcemper/WSockClientMicroSV/blob/master/READMEwindows.MD
2020年5月26日 - rcc

このデモは、Caché用にすでに存在するNode.jsに基づくWebSocketクライアントを再設計したものです。 主に以下のような変更点があります。

  • 新しいIRIS Native API for Node.jsの使用。特にグローバル配列を操作する場合
  • 直接トリガーされたクライアントからサーバー設計への変更
  • マイクロサービス/マイクロサーバーの例として、結果を別のdockerイメージに配置
  • マイクロサービスの実行を制御するための単純なインターフェースをIRISに追加
0 0
0 218
記事
· 2022年1月27日 11m read
Python用IRISネイティブAPI

はじめに

バージョン2019.2より、InterSystems IRISは、高性能データアクセス手法としてPython用のネイティブAPIを提供してきました。 ネイティブAPIを使用すると、ネイティブのIRISデータ構造と直接対話することができます。

0 0
0 316

キーワード: PyODBC、unixODBC、IRIS、IntegratedML、Jupyterノートブック、Python 3

目的

数か月前、私は「IRISデータベースへのPython JDBC接続」という簡易メモを書きました。以来、PCの奥深くに埋められたスクラッチパッドよりも、その記事を頻繁に参照しています。 そこで今回は、もう一つの簡易メモで「IRISデータベースへのPython ODBC接続」を作成する方法を説明します。

ODBCとPyODCBをWindowsクライアントでセットアップするのは非常に簡単なようですが、Linux/Unix系サーバーでunixODBCとPyODBCクライアントをセットアップする際には毎回、どこかで躓いてしまいます。

バニラLinuxクライアントで、IRISをインストールせずに、リモートIRISサーバーに対してPyODBC/unixODBCの配管をうまく行うための単純で一貫したアプローチがあるのでしょうか。

0 0
0 879

この短い記事では、マシンにPythonをセットアップしなくて済むように、dockerコンテナでYapeを実行する方法について説明します。

このシリーズの前回の記事からしばらく時間が経っているため、簡単に振り返ってみましょう。

まず、matplotlibで基本的なグラフを作成する方法について話しました。 そして、bokehを使った動的グラフについて紹介しました。 最後にパート3では、monlblデータを使ったヒートマップの生成について説明しました。

0 0
0 84
1 0
0 69
開発者の皆さん
こんにちは。

こちらは 2021年に開発者コミュニティに投稿された記事のダイジェストです。
2021 年も InterSystems コミュニティにご貢献いただき、ありがとうございました!
全体統計
418 件の投稿が公開 (2021 年):
– 記事 327 件
– アナウンス 76 件
– 質問 14 件
– 議論 1 件
2,452 人のメンバーが開発者コミュニティに参加 (2021 年)
656 件の投稿が公開 (全期間)
登録者合計 10,287 名
1 0
0 45

これまでに何度もコードカバレッジとコードのパフォーマンス最適化について説明してきたため、ほとんどの方はすでにSYS.MONLBLユーティリティについてご存知かと思います。 コードを視覚的に見る方が通常は、純粋な数値を見るよりもはるかに直感的に理解できます。これが、このシリーズの記事の大きなポイントです。 今回は、Pythonとそのツールから少し離れて、^%SYS.MONLBLレポートからヒートマップを生成する方法を探りたいと思います。

簡単に言うと、ヒートマップは特定の値を色で表現してデータの要約を得ることに特化した視覚化ツールです。 このケースでは、データはコード行であり、コード行に掛けられた時間が色にマッピングされます。

1 0
0 99

キーワード: Python、JDBC、SQL、IRIS、Jupyterノートブック、Pandas、Numpy、および機械学習

1. 目的

これは、デモの目的で、Jupyterノートブック内でPython 3によってIRIS JDBCドライバーを呼び出し、SQL構文でIRISデータベースインスタンスにデータを読み書きする、5分程度の簡単なメモです。

昨年、私はCacheデータベースへのPythonバインディング(セクション4.7)について簡単に触れました。 そこで、Pythonを使ってIRISデータベースに接続し、そのデータをPandasデータフレームとNumPy配列に読み込んで通常の分析を行ってから、事前処理済みまたは正規化されたデータをML/DLパイプラインに通すためにIRISに書き込む作業においてのオプションと議論について要約しましょう。

すぐに思い浮かぶ簡単なオプションがいくつかあります。

2 0
0 733

先週のディスカッションでは、1つのファイルのデータ入力に基づく単純なグラフを作成しました。 ご存知のように、解析して相関付けるデータファイルが複数あることがあります。 そこで今週は、perfmonデータを追加して読み込み、それを同じグラフにプロットする方法について学習しましょう。 生成したグラフをレポートやWebページで使用する可能性があるため、生成したグラフのエクスポート方法についても説明します。

Windowsのperfmonデータを読み込む

標準のpButtonsレポートから抽出されたperfmonデータは、少し独特なデータ形式です。 一見すると、かなり単純なCSVファイルで、 最初の行には列のヘッダーがあり、それ以降の行にはデータポイントが含まれています。 ただし、ここでの目的のために、値エントリーを囲む引用符をどうにかする必要があります。 標準的なアプローチを使用してファイルをPythonに解析すると、文字列オブジェクトの列ができてしまい、うまくグラフ化できません。

0 0
0 128

あるお客様の問題から、この短い記事を書くことにしました。 お客様はEnsembleを使用して、多数のシステムを統合しています。一部のシステムではプレーンファイルのみが使用されています。

そのため、ターゲットファイルへの書き込みには、自然とFile Outbound Adapter を選択しました。 数年もの間すべてが順調に稼働していましたが、最近になって、ファイルに書き込まれるデータが数十メガバイトという大きなサイズに達するようになり問題が出てきました。オペレーションが完了するまでに約30分かかるようになり、プロセス内の後続の処理を待たせなければならないタイミングの問題が発生し始めたのです。当然、連携先のシステムはそれほど長く待つことを良しとしません。

お客様のコードは、以下の疑似コードのようなものでした。

1 0
0 90

皆さん、こんにちは。

開発者コミュニティやGlobal Masters、Open Exchangeといった開発者Ecoシステムで、メールアドレス(ログインメール)を変更しても、アクティビティが失われないようにする必要があります。

それは簡単です。私たちにお任せください!

1 0
0 78
記事
· 2021年12月14日 5m read
Node.jsでのZPMの使用

着想: @Evgeny Shvarovとその記事より
Deploying InterSystems IRIS Embedded Python Solutions with ZPM Package Manager
このアイデアを発展させ、同じことをNode.js.のモジュールで行ってみました。
このケースは、私の「IRIS Native API for Node.js」の例に基づいています。

InterSystems IRIS はクライアントとしてネイティブでWebSocketsをサポートしているというわかりきった返答を期待して:
その通りです。そして、私がその昔書いた関連記事OEXのサンプルへのリンクはこちらです。

1 0
0 111