キーワード: COVID-19、医用画像、ディープラーニング、PACSビューア、HealthShare。

 

目的

私たちは皆、この前例のないCovid-19パンデミックに悩まされています。 現場のお客様をあらゆる手段でサポートする一方で、今日のAI技術を活用して、Covid-19に立ち向かうさまざまな前線も見てきました。 

昨年、私はディープラーニングのデモ環境について少し触れたことがあります。 この長いイースターの週末中に、実際の画像を扱ってみてはどうでしょうか。Covid-19に感染した胸部X線画像データセットに対して簡単な分類を行うディープラーニングモデルをテスト実行し、迅速な「AIトリアージ」や「放射線科医の支援」の目的で、X線画像やCT用のツールがdockerなどを介してクラウドにどれほど素早くデプロイされるのかを確認してみましょう。     

これは、10分程度の簡易メモです。学習過程において、最も単純なアプローチでハンズオン経験を得られることを願っています。   

00
0 0 7

キーワード:   Jupyterノートブック、TensorFlow GPU、Keras、ディープラーニング、MLP、HealthShare    

 

1. 目的

前回の「パート1」では、ディープラーニングデモ環境をセットアップしました。今回「パート2」では、それを使ってできることをテストします。

私と同年代の人の中には、古典的なMLP(多層パーセプトロン)モデルから始めた人がたくさんいます。 直感的であるため、概念的に取り組みやすいからです。

それでは、AI/NNコミュニティの誰もが使用してきた標準的なデモデータを使って、Kerasの「ディープラーニングMLP」を試してみましょう。 いわゆる「教師あり学習」の一種です。 これを実行するのがどんなに簡単かをKerasレベルで見ることにします。

後で、その歴史と、なぜ「ディープラーニング」と呼ばれているのかについて触れることができます。流行語ともいえるこの分野は、実際に最近20年間で進化してきたものです。 

00
0 0 8

Python 3をHealthShareにバインディングした深層学習デモキット(パート1)
キーワード:  Anaconda、Jupyterノートブック、TensorFlow GPU、ディープラーニング、Python 3、HealthShare    

1. 目的

この「パート1」では、Python 3をHealthShare 2017.2.1インスタンスにバインドして、「単純」かつ一般的なディープラーニングデモ環境をセットアップする方法を段階的に簡単に説明します。  私は手元にあるWin10ノートパソコンを使用しましたが、このアプローチはMacOSとLinuxでも同じように実装できます。

先週、PYPL Indexにおいて、Pythonが最も人気のある言語としてJavaを超えたことが示されました。  TensorFlowも研究や学術の分野において非常に人気のある強力な計算エンジンです。 HealthShareは、ケア提供者に患者の統一介護記録を提供するデータプラットフォームです。

00
0 0 10

開発者の皆さん
こんにちは!

普段お世話になっている皆さんへ、うれしいお知らせです!

この度、なんと! 開発者コミュニティのメンバー登録が1万人に達しました! 🎊

インターシステムズはコミュニティの力を信じています。この6年間の皆様のご協力に感謝するとともに、これからもよろしくお願いいたします。

30
0 1 13
記事
Toshihiko Minamoto · 2021年11月11日 8m read
GitHub Codespaces と IRIS

しばらく前、GitHubはGitHub Codespacesという新しい機能を発表しました。 ブラウザでVSCodeを実行する機能があります。マシンでローカルに実行するのとほぼ同じ性能がありますが、クラウドの能力も備わっているため、最大32CPU、64 GB RAMのマシンタイプを選択することが可能です。

素晴らしいことですね。 でも、このことは、InterSystems IRISで駆動するプロジェクトで作業する上で、どのように役立つのでしょうか。 それをどのように構成するのか見てみましょう。

10
0 0 15

この連載の最初の記事では、大きなチャンクのデータをHTTP POSTメソッドのRaw本体から読み取って、それをクラスのストリームクラスとしてデータベースに格納する方法を説明しました。 2つ目の記事では、ファイルとファイル名をJSON形式にラップして送信する方法を説明しました。 

それでは、大きなファイルを分割してサーバーに送るという構想を詳しく見ていきましょう。 これを行うために使用できるアプローチにはいくつかあるのですが、 この記事では、Transfer-Encodingヘッダーを使用してチャンク転送を指示する方法を説明します。 Transfer-EncodingヘッダーはHTTP/1.1仕様で導入されたものです。RFC 7230第4.1項では説明されているものの、HTTP/2仕様からはその説明が無くなっています。 

00
0 0 14

この連載の第1回目の記事では、「大規模な」チャンクのデータをHTTP POSTメソッドのRaw本体から読み取って、それをクラスのストリームプロパティとしてデータベースに格納する方法について説明しました。 では、そのようなデータとメタデータをJSON形式で格納する方法について見てみましょう。

00
0 0 16