少し遅れましたが、モバイルアプリケーションから接続する例を示して Workflow Engine に関する連載記事をようやく締めくくることにします。

前回の記事では、これから説明する例として、患者と担当医師の両方にとって高血圧症などの慢性病状の詳細な管理を可能にするアプリケーションを示しました。 この例では、患者は携帯電話からウェブアプリケーション(基本的に、デバイスに応答するように設計されたウェブページ)にアクセスし、ポータブル血圧計が IRIS インスタンスに送信する測定に基づく通知を受信します。

したがって、IRIS インスタンスへのアクセスは 2 つです。

  • モバイルアプリケーションからのユーザーアクセス。
  • 血圧の測定値を送信するデバイスアクセス。

この記事では、患者が測定値を生成するタスクを管理できる、最初のアクセスを確認します。

0 0
0 11

コミュニティの皆さん、こんにちは。

この記事では、私のアプリケーションである iris-AgenticAI をご紹介します。

エージェンティック AI の登場により、人工知能が世界とやりとりする方法に変革的な飛躍をもたらし、静的なレスポンスが動的な目標主導の問題解決にシフトしています。 OpenAI の Agentic SDK を搭載した OpenAI Agents SDK を使用すると、抽象化をほとんど行わずに軽量で使いやすいパッケージでエージェンティック AI アプリを構築できます。 これは Swarm という前回のエージェントの実験を本番対応にアップグレードしたものです。
このアプリケーションは、人間のような適応性で複雑なタスクの推論、コラボレーション、実行を行える次世代の自律 AI システムを紹介しています。

アプリケーションの機能

  • エージェントループ  🔄 ツールの実行を自律的に管理し、結果を LLM に送信して、タスクが完了するまで反復処理するビルトインのループ。
  • Python-First 🐍 ネイティブの Python 構文(デコレーター、ジェネレーターなど)を利用して、外部の DSL を使用せずにエージェントのおケースとレーションとチェーンを行います。
  • ハンドオフ 🤝 専門化されたエージェント間でタスクを委任することで、マルチエージェントワークフローをシームレスに調整します。
  • 関数ツール ⚒️ @tool で Python 関数をデコレートすることで、エージェントのツールキットに即座に統合させます。
  • ベクトル検索(RAG) 🧠 RAG 検索のためのベクトルストアのネイティブ統合。
  • トレース 🔍 リアルタイムでエージェントワークフローの可視化、デバッグ、監視を行うためのビルトインのトレース機能(LangSmith の代替サービスとして考えられます)。
  • MCP サーバー 🌐 stdio と HTTP によるモデルコンテキストプロトコル(MCP)で、クロスプロセスエージェント通信を可能にします。
  • Chainlit UI 🖥️ 最小限のコードで対話型チャットインターフェースを構築するための統合 Chainlit フレームワーク。
  • ステートフルメモリ 🧠 継続性を実現し、長時間実行するタスクに対応するために、セッション間でチャット履歴、コンテキスト、およびエージェントの状態を保持します。

0 0
0 11

コミュニティの皆さん、こんにちは。

従来のキーワードベースの検索では、ニュアンスのあるドメイン固有のクエリには対応できません。 ベクトル検索であれば、セマンティック認識を利用して、キーワードだけでなくコンテキストにも基づいたレスポンスを AI エージェントで検索して生成することができます。

この記事では、エージェンティック AI RAG(検索拡張生成)アプリケーションを作成手順を紹介します。

実装手順:

  1. エージェントツールを作成する
    • インジェスト機能の追加: ドキュメント(例: InterSystems IRIS 2025.1 リリースノート)を自動的にインジェストしてインデックス作成を行います。
    • ベクトル検索機能の実装
  2. ベクトル検索エージェントを作成する
  3. Triage(メインエージェント)に渡す
  4. エージェントを実行する
0 0
0 11

この連載記事を終えていなかったことに気付きました!

GIF de Shame On You Meme | Tenor

今日の記事では、フロントエンドから最適なオプションを選択できるように、テキストに最も類似する ICD-10 診断を抽出するプロダクションプロセスについて説明します。

診断の類似度検索:

アプリケーション内で、HL7 で受け取った診断リクエストを示す画面から、医療従事者が入力したテキストに最も近い ICD-10 診断を検索できます。

1 0
0 12

REST レスポンスから IRIS データーベースに情報を保存する新しいプロジェクトがあります。 少なくとも 20 以上の個別の REST エンドポイントの情報を同期する必要があるため、それらのエンドポイントの結果を保存するために、ほぼ同じ数の ObjectScript クラスを作成しなければなりません。

ChatGPT を使って、それらのクラスを作成することはできますか? 答えは「できます」です。生成 AI を使って便利なものを作るのは初めてなので、素晴らしい機会だと思います。 スープを飲むキリンの写真を生成するのには飽きてきました…。

1 0
0 14

次回の Python コンテストでは、Python を使用して IRIS をデータベースとして使用する簡単な REST アプリケーションを作成する方法についての小さなデモを作成しようと思います。 以下のツールを使用します。

  • FastAPI フレームワーク: 高パフォーマンス、学習しやすい、高速コーディング、プロダクション対応
  • SQLAlchemy: Python SQL ツールキットで、アプリケーション開発者が SQL の全性能と柔軟性を活用できるオブジェクトリレーションマッパーです。
  • Alembic: Python 用の SQLAlchemy データベースツールキットと使用する軽量のデータベース移行ツール。
  • Uvicorn: Python の ASGI ウェブサーバー実装。

1 0
0 35

しばらくの間、私はワークフロー機能について何らかの概念実証を行おうと計画していましたが、これは IRIS に存在する他の多くの機能と同様に、お客様にほとんど気付かれないまま終わってしまう傾向があります(その点については申し訳ありません)。 そこで数日前、この機能を構成して、Angular で開発したユーザーインターフェースに接続して使用するための例を作成することに決めました。

記事が非常に長くならなずに読みやすくするために、3 部に分けて説明しようと思います。 この最初の記事では、Workflow の機能とこれから解決する例について説明します。 2 つ目の記事では、Workflow の管理を担うプロファクションの構成と実装について詳しく説明します。 最後に、ウェブアプリケーションを通じて Workflow にある情報にアクセスする方法を説明します。

InterSystems IRIS Workflow Engine

この Workflow 機能を説明するには、IRIS ドキュメントに記載の説明をコピーするのが一番でしょう。

1 0
0 28

前回の記事では、一般的な概念と、InterSystems IRIS に統合されたタスクエンジンを使用して解決する問題を紹介しました。今回の記事では、相互運用性プロダクションを構成してソリューションを提供する方法を確認します。

Workflow Engine の構成

First we are going to define the roles of the tasks that we are going to manage, in our example we are going to define two types:

  • AutomaticBloodPressureRole: ユーザーの介入が不要な自動タスクを作成します。
  • ManualBloodPressureRole: ユーザーが手動で検証する必要のあるタスクを作成します。

0 0
0 29

Django フレームワークは長年学習したいと思ってきましたが、いつも他の差し迫ったプロジェクトが優先されてきました。 多くの開発者と同様に、機械学習においては Python を使用していますが、初めてウェブプログラミングについて学習したころは、PHP がまだまだ優勢でした。そのため、機械学習の作品を公開する目的でウェブアプリケーションを作成するための新しい複雑なフレームワークを選択する機会が訪れても、私は依然として PHP に目を向けていました。 ウェブサイトの構築には Laravel と呼ばれるフレームワークを使用してきましたが、この PHP フレームワークから最新の MVC(モデルビューコントローラー)というウェブプログラミングのパターンに出会いました。 さらに複雑なことに、私は最新の JavaScript フレームワークを使用してフロントエンドを構築するのを好んでいます。 React を使用するのがより一般的のようですが、私は Vue.js に一番慣れているため、このプロジェクトではそれを使用することにしました。

なぜ複雑なフレームワークを使用するのでしょうか? Django、Laravel、React、または Vue などのフレームワークを学習する際の最大の難関は何でしょうか?

0 0
0 57

Auth0 と InterSystems IRIS FHIR リポジトリ使った SMART On FHIR に関する連載最終回では、Angular 16 で開発したアプリケーションをレビューします。

このソリューションに定義されたアーキテクチャがどのように構成されているかを思い出しましょう。

フロントエンドのアプリケーションは 2 列目で、ご覧のように 2 つのことを行います。

0 0
0 35

お客様のプロジェクトにおいて、どのようにすればいつ何時に誰がデータベースを変更したかを追跡できるか問われました。 SQL とオブジェクトへの両方のアクセスで Insert、Update、および Delete を追跡することが目的です。

以下は、変更ログを維持するために作成したテーブルです。

0 0
0 29

django_logo

説明

これは、ネイティブウェブアプリケーションとして IRIS にデプロイできる Django アプリケーションのテンプレートです。

インストール

  1. リポジトリをクローンする
  2. 仮想環境を作成する
  3. 要件をインストールする
  4. docker-compose ファイルを実行する
git clone
cd iris-django-template
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
docker-compose up

使用法

ベース URL は http://localhost:53795/django/ です。

0 0
0 30

fastapi_logo

説明

これは、ネイティブウェブアプリケーションとして IRIS にデプロイできる FastAPI アプリケーションのテンプレートです。

インストール

  1. リポジトリをクローンする
  2. 仮想環境を作成する
  3. 要件をインストールする
  4. docker-compose ファイルを実行する
git clone
cd iris-fastapi-template
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
docker-compose up

使用法

ベース URL は http://localhost:53795/fastapi/ です。

0 0
0 66

Flask_logo

説明

これは、ネイティブウェブアプリケーションとして IRIS にデプロイできる Flask アプリケーションのテンプレートです。

インストール

  1. リポジトリをクローンする
  2. 仮想環境を作成する
  3. 要件をインストールする
  4. docker-compose ファイルを実行する
git clone
cd iris-flask-template
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
docker-compose up

使用法

ベース URL は http://localhost:53795/flask/ です。

0 0
0 61
記事
· 2025年2月20日 4m read
WSGI サポートの概要

wsgi_logo

コンテキスト

ウェブサーバーゲートウェイインターフェース(WSGI)は、ウェブサーバーがリクエストを Python プログラミング言語で記述されたウェブアプリケーションまたはフレームワークに転送するための単純な呼び出し規則です。 WSGI は PEP 3333 で詳しく説明された Python 規格です。

🤔 定義は良いとして、IRIS との関連性は何でしょうか?

IRIS 2024.2+ の新機能により、直接 IRIS で WSGI アプリケーションを実行できます。 この機能は、IRIS を他の Python フレームワークとライブラリに統合する優れた方法です。

0 0
0 43

コミュニティメンバーから、Python 2024 コンテストでの出品に対する非常に素晴らしいフィードバックが届きました。 ここで紹介させていただきます。

0 0
0 76