記事
· 2025年11月24日 5m read
Pythonでの仮想環境入門

img

この記事では、Pythonでの仮想環境の概念を紹介します。仮想環境は、依存関係を管理してプロジェクトをOSから分離するために不可欠です。

仮想環境とは?

仮想環境とは、次が含まれているフォルダのことです。

  • 特定のバージョンのPython
  • 最初は空のsite-packagesディレクトリ

仮想環境により、OSのPythonインストールとその他のプロジェクトからプロジェクトを分離できるようになります。

使用方法

仮想環境を使用するには、これらの手順に従います。

  1. 仮想環境を作成する:Pythonに標準搭載されている venv モジュールを使用すると、仮想環境を作成できます。 ターミナルを開いて、以下を実行します。

0 0
0 12

コミュニティのみなさまに嬉しいお知らせです。

今年冒頭より、InterSystems IRIS, InterSystems IRIS for Health, Health Connect 向けの多くのクライアントSDKが、各外部リポジトリ (Maven, NuGet, npm, PyPI)に公開されております。これにより、ユーザのみなさまに以下のような多くのメリットがあります。

1 0
0 16
記事
· 2025年11月18日 7m read
Pythonモジュール入門

img

モジュールは重要なテーマです! ObjectScriptにはこの概念はありませんが、Pythonでは基本的な考え方です。 一緒に見ていきましょう。

モジュールとは?

モジュールは、クラスとパッケージの間にある中間層だと私は考えています。 例を見てみましょう。

悪い例:

# MyClass.py
class MyClass:
    def my_method(self):
        print("Hello from MyClass!")

別のスクリプトでこのクラスを使用する場合、次のようになります。

1 0
0 16

新しい InterSystems IRIS® Cloud SQL と InterSystems IRIS® Cloud IntegratedML® クラウド製品のユーザーであり、デプロイメントのメトリクスにアクセスして独自の可観測性プラットフォームに送信しようと考えている方のために、メトリクスを Google Cloud Platform Monitoring(旧称 StackDriver)に送信して手っ取り早く行う方法をご紹介します。

0 0
0 26

img

この記事では、IRIS環境におけるPythonプログラミングの基礎について紹介します。

本題に入る前に、重要なトピックである「Pythonの仕組み」について説明します。これは、IRIS環境でPythonを使用して作業する際に起こりうる問題や制限を理解するのに役立ちます。

すべての記事と例は、以下のgitリポジトリで確認できます: iris-python-article

Pythonの仕組み

インタープリター型言語

Pythonはインタープリター型言語であり、コードはランタイム時に1行ずつ実行されます。スクリプトをインポートする場合でも同様です。

これはどういうことでしょうか? 以下のコードを見てみましょう。

0 0
0 32
記事
· 2025年10月28日 3m read
Pythonダンダーメソッド入門

img

この記事では、マジックメソッドとしても知られるPythonダンダーメソッドについて簡単に解説します。

ダンダーメソッドとは?

ダンダーメソッドは、始めと終わりに2つのアンダースコア(__)が付いているPythonの特殊メソッドです。 このメソッドを使用することで、加算や減算、文字列表現など、組み込みの操作に対するオブジェクトの動作を定義することができます。

よくあるダンダーメソッドには、次が含まれます。

0 0
0 21
参加者

コミュニティの皆さんこんにちは。

ベクトル検索関連の処理が完全にノーマークだった私が、一先ず「やってみよう!」との事で、2つの動画のサンプルを実行してみました。
Pythonは初心者なので、アレな箇所があっても目をつぶっていただけると幸いです。

また、間違っている箇所があったら、ご指摘いただけると幸いです。



■参考にした動画

■参考にしたコミュニティ記事

12 0
0 89

.pyファイルの中でIRISのEmbedded Pythonを動作させる際にirispythonコマンドで実行する方法はドキュメント上で紹介されていましたので、以前より使用していました。

しかし、普通のpythonコマンドを使用するとうまく実行できなかったのですが、最近その謎(原因)が解けたので紹介します。

これは、Mac特有の問題である可能性が高くWindowsやLinuxでは何の問題もなく実行できるのかもしれません。

エラーは以下のようなエラーです。

0 3
0 84

開発者の皆さん、こんにちは!

この記事では、Developer Hub にあるチュートリアルに新しいチュートリアル:InterSystems IRIS ベクトル検索を使用した RAG が追加されましたので内容をご紹介します。(準備不要でブラウザがあれば試せるチュートリアルです!)

このチュートリアルでは、生成 AI アプリケーションの精度向上に向けて、ベクトル検索と検索拡張生成(Retrieval Augmented Generation)の活用を体験できます。

具体的には、InterSystems IRIS のベクトル検索機能を活用し、生成 AI チャットボット向けのナレッジベースをサンプルコードを利用して作成します。

0 0
0 37

コミュニティの皆さん、こんにちは。

この記事では、私のアプリケーションである iris-AgenticAI をご紹介します。

エージェンティック AI の登場により、人工知能が世界とやりとりする方法に変革的な飛躍をもたらし、静的なレスポンスが動的な目標主導の問題解決にシフトしています。 OpenAI の Agentic SDK を搭載した OpenAI Agents SDK を使用すると、抽象化をほとんど行わずに軽量で使いやすいパッケージでエージェンティック AI アプリを構築できます。 これは Swarm という前回のエージェントの実験を本番対応にアップグレードしたものです。
このアプリケーションは、人間のような適応性で複雑なタスクの推論、コラボレーション、実行を行える次世代の自律 AI システムを紹介しています。

アプリケーションの機能

  • エージェントループ  🔄 ツールの実行を自律的に管理し、結果を LLM に送信して、タスクが完了するまで反復処理するビルトインのループ。
  • Python-First 🐍 ネイティブの Python 構文(デコレーター、ジェネレーターなど)を利用して、外部の DSL を使用せずにエージェントのオーケストレーションとチェーンを行います。
  • ハンドオフ 🤝 専門化されたエージェント間でタスクを委任することで、マルチエージェントワークフローをシームレスに調整します。
  • 関数ツール ⚒️ @tool で Python 関数をデコレートすることで、エージェントのツールキットに即座に統合させます。
  • ベクトル検索(RAG) 🧠 RAG 検索のためのベクトルストアのネイティブ統合。
  • トレース 🔍 リアルタイムでエージェントワークフローの可視化、デバッグ、監視を行うためのビルトインのトレース機能(LangSmith の代替サービスとして考えられます)。
  • MCP サーバー 🌐 stdio と HTTP によるモデルコンテキストプロトコル(MCP)で、クロスプロセスエージェント通信を可能にします。
  • Chainlit UI 🖥️ 最小限のコードで対話型チャットインターフェースを構築するための統合 Chainlit フレームワーク。
  • ステートフルメモリ 🧠 継続性を実現し、長時間実行するタスクに対応するために、セッション間でチャット履歴、コンテキスト、およびエージェントの状態を保持します。

0 0
0 29

開発者の皆さん、こんにちは!

Windows 版 IRIS/IRIS for Health 2025.1 以降で Embedded Python をご利用いただく場合、Windows に Python のインストールが必要になりました。

以前のバージョンから Embedded Python をご利用いただいている場合は、新しいバージョンにアップグレードした後、Python のインストールと IRIS 側に必要な設定がありますのでご注意ください。

※ 2024.1 以前のバージョンでは、IRIS インストールと同時にインストールされる Python ご利用いただく必要があったため、Windows への Python インストールは不要でした。

補足:フレキシブル Python ランタイム機能の導入により、OS にインストールされた Python のバージョンを IRIS 側で指定できるようになりました。

2 0
3 82

これは InterSystems FAQ サイトの記事です。

InterSystems 製品では、ファイルオープン時に文字コードを指定すれば指定の文字コードで正しくファイルの中身を処理できます。

文字コードを指定しない場合、InterSystems 製品をインストールした OS に合わせて設定されたファイル I/O 用文字コードを利用してファイルをオープンします(Linux 系は UTF8、Windows は SJIS)。

また、文字列については文字コードが判明していれば $ZCONVERT() 関数を使用して指定文字コードで文字列を処理することができます。

 例)$ZCONVERT(文字列,"I","IRIS内文字コード")

2 0
1 101

次回の Python コンテストでは、Python を使用して IRIS をデータベースとして使用する簡単な REST アプリケーションを作成する方法についての小さなデモを作成しようと思います。 以下のツールを使用します。

  • FastAPI フレームワーク: 高パフォーマンス、学習しやすい、高速コーディング、プロダクション対応
  • SQLAlchemy: Python SQL ツールキットで、アプリケーション開発者が SQL の全性能と柔軟性を活用できるオブジェクトリレーションマッパーです。
  • Alembic: Python 用の SQLAlchemy データベースツールキットと使用する軽量のデータベース移行ツール。
  • Uvicorn: Python の ASGI ウェブサーバー実装。

1 0
0 49

Django フレームワークは長年学習したいと思ってきましたが、いつも他の差し迫ったプロジェクトが優先されてきました。 多くの開発者と同様に、機械学習においては Python を使用していますが、初めてウェブプログラミングについて学習したころは、PHP がまだまだ優勢でした。そのため、機械学習の作品を公開する目的でウェブアプリケーションを作成するための新しい複雑なフレームワークを選択する機会が訪れても、私は依然として PHP に目を向けていました。 ウェブサイトの構築には Laravel と呼ばれるフレームワークを使用してきましたが、この PHP フレームワークから最新の MVC(モデルビューコントローラー)というウェブプログラミングのパターンに出会いました。 さらに複雑なことに、私は最新の JavaScript フレームワークを使用してフロントエンドを構築するのを好んでいます。 React を使用するのがより一般的のようですが、私は Vue.js に一番慣れているため、このプロジェクトではそれを使用することにしました。

なぜ複雑なフレームワークを使用するのでしょうか? Django、Laravel、React、または Vue などのフレームワークを学習する際の最大の難関は何でしょうか?

0 0
0 70

これは、InterSystems FAQサイトの記事です。


メソッドの実装に使用する言語を明示する場合は、下記のようにメソッドキーワードで「Language=~~~」と指定します。

Method name(formal_spec) As returnclass [ Language = language ]
{    //implementation }

指定できるLanguageの値は下記のとおりです。

0 0
0 59

django_logo

説明

これは、ネイティブウェブアプリケーションとして IRIS にデプロイできる Django アプリケーションのテンプレートです。

インストール

  1. リポジトリをクローンする
  2. 仮想環境を作成する
  3. 要件をインストールする
  4. docker-compose ファイルを実行する
git clone
cd iris-django-template
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
docker-compose up

使用法

ベース URL は http://localhost:53795/django/ です。

0 0
0 40

IRIS 2024.3 で発生する2つの製品障害が確認されました。お使いの環境が該当する場合は、それぞれの解決方法にしたがってご対応いただきますよう、よろしくお願いします。

0 0
0 48

fastapi_logo

説明

これは、ネイティブウェブアプリケーションとして IRIS にデプロイできる FastAPI アプリケーションのテンプレートです。

インストール

  1. リポジトリをクローンする
  2. 仮想環境を作成する
  3. 要件をインストールする
  4. docker-compose ファイルを実行する
git clone
cd iris-fastapi-template
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
docker-compose up

使用法

ベース URL は http://localhost:53795/fastapi/ です。

0 0
0 77

Flask_logo

説明

これは、ネイティブウェブアプリケーションとして IRIS にデプロイできる Flask アプリケーションのテンプレートです。

インストール

  1. リポジトリをクローンする
  2. 仮想環境を作成する
  3. 要件をインストールする
  4. docker-compose ファイルを実行する
git clone
cd iris-flask-template
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
docker-compose up

使用法

ベース URL は http://localhost:53795/flask/ です。

0 0
0 74
記事
· 2025年2月20日 4m read
WSGI サポートの概要

wsgi_logo

コンテキスト

ウェブサーバーゲートウェイインターフェース(WSGI)は、ウェブサーバーがリクエストを Python プログラミング言語で記述されたウェブアプリケーションまたはフレームワークに転送するための単純な呼び出し規則です。 WSGI は PEP 3333 で詳しく説明された Python 規格です。

🤔 定義は良いとして、IRIS との関連性は何でしょうか?

IRIS 2024.2+ の新機能により、直接 IRIS で WSGI アプリケーションを実行できます。 この機能は、IRIS を他の Python フレームワークとライブラリに統合する優れた方法です。

0 0
0 66

InterSystems IRIS 2021.2 のバージョンより、Embedded Python を使用できるようになりました。

Embedded Python で Excel のデータを IRIS グローバルに格納する方法 では pandas.DataFrame のデータを InterSystems IRIS グローバルに保存する方法をご紹介しました。
こちらの記事では、その逆の「InterSystems IRIS グローバル($LB) を pandas.DataFrame に変換する」方法をご紹介します。

2 1
0 454

開発者の皆さん、こんにちは。

Teams ワークフロー Webhook を用意すると、curl コマンドや REST クライアントを利用して Teams チャネルに任意メッセージを簡単に送信できるので、IRIS や IRIS の Interoperability を使って自動的に何か情報を入手+必要なときだけ Teams チャネル通知ができたら面白いな、と思い試してみた内容をご紹介します。

以下、Teamsワークフローの作成例です。

4 0
0 100

Mac版IRISでは、現状Pythonのバージョンが固定(3.11)なのですが、これに付随する他製品との相性問題に遭遇しましたので報告します。

今までEmbedded Pythonは調子よく動作していたのですが、ある時から急に動作しなくなりました。

原因を調べてみると、Python3.13がインストールされ、それがデフォルトとして上書きされたため、irispythonコマンドを発行すると、それが内部で3.13を呼ぶ様になってしまったためでした。

ちなみにiris session でログインし、そこからEmbedded Pythonを実行する場合は、問題ありません。

あくまでもirispythonコマンドで直接.pyファイルを実行する場合に発生する問題です。

そしてとりあえずの対処法は、python3をpython3.11で置き換える方法です。

以下のような感じです。(どのMacでもbrewコマンドでインストールした場合、ディレクトリ構造は同じだと思いますが、違う可能性もゼロではありません)

cp /opt/homebrew/bin/python3.11 /opt/homebrew/bin/python3

1 0
0 44

コミュニティメンバーから、Python 2024 コンテストでの出品に対する非常に素晴らしいフィードバックが届きました。 ここで紹介させていただきます。

0 0
0 85

コミュニティの皆さんこんにちは。

突然ですが、皆さんはIRISの機能にある「ユニットテスト」は利用されているでしょうか。
筆者はまだ実装まで行えていませんが、各関数の品質保証を担保するため導入を検討している段階です。

現状、IRISのユニットテストには下記2点の対応すべき点があると考えています。

  1. テスト結果の可読性が低い(先日vscodeで拡張機能が出ていましたが、やはり見ずらいと感じました)
  2. ユニットテストを自動で実行する手段がない

特にテストが継続的に自動で実施されないと、ユニットテスト自体が次第に陳腐化し、実行されなくなり忘れ去られる恐れがあると考えます。
ただし、意味もなく定期的にテストを実行しても効果がありません。
そこで、Gitのpushのタイミングで行おうと考えました。

次にテスト環境です。
テスト環境の構築は、テスト自動化の観点からみるとCI/CDツール等を利用するのが一般的だと思います。
ただ今回は、テスト環境の構築を簡易にすませたいと考え、IRISの既存技術を組み合わせて構築しようと考えました。

11 0
0 216

開発者の皆さん、こんにちは!

この記事は、2024年7月に開催された「InterSystems Pythonプログラミングコンテスト2024」でエキスパート投票、コミュニティ投票の両方で1位を獲得された @Henry Pereira さん @José Pereira さん @Henrique Dias さんが開発された sqlzilla について、アプリを動かしてみた感想と、中の構造について @José Pereira さんが投稿された「Text to IRIS with LangChain」の翻訳をご紹介します。

第2回 InterSystems Japan 技術文書ライティングコンテスト 開催! では、生成AIに関連する記事を投稿いただくと、ボーナスポイントを4点獲得できます📢 @José Pereira さんの記事を💡ヒント💡に皆様の操作体験談、アイデアなどを共有いただければと思います。

開発されたアプリSQLzilla についての概要ですが、Open Exchangesqlzilla のREADMEに以下のように紹介されています。

「SQLzilla は、Python と AI のパワーを活用して、自然言語の SQL クエリ生成を通じてデータ アクセスを簡素化し、複雑なデータ クエリとプログラミング経験の少ないユーザーとの間のギャップを埋めます。」

1 1
0 149

Pandas は単に人気のあるソフトウェアライブラリだけではありません。 これは、Python データ分析環境の基礎でもあります。 その単純さとパワーで知られており、データの準備と分析の複雑さをより扱いやすい形態に変換する上で不可欠な多様なデータ構造と関数が備わっています。 これは、主要なデータ管理および分析ソリューションである InterSystems IRIS プラットフォームのフレームワーク内で、主要評価指標(KPI)やレポート作成用の ObjectScript などの特殊な環境に特に関連しています。

データの処理と分析の分野において、Pandas はいくつかの理由により際立っています。 この記事では、それらの側面を詳細に探ります。

  • データ分析における Pandas の主なメリット:

ここでは、Pandas を使用する様々なメリットについて深く掘り下げます。 直感的な構文、大規模なデータセットの効率的な処理、および異なるデータ形式のシームレスな操作などが含まれます。 Pandas を既存のデータ分析ワークフローに統合する容易さも、生産性と効率を強化する大きな要因です。

1 0
0 122

開発者の皆さん、こんにちは!

次のInterSystems プログラミングコンテストの内容についてご案内します📣

🏆 InterSystems Python コンテスト 🏆

期間: 2024年7月15日~2024年8月4日

賞金総額:$14,000

2 0
0 186