キーワード: Jupyterノートブック、TensorFlow GPU、Keras、ディープラーニング、MLP、HealthShare

1. 目的

前回の「パート1」では、ディープラーニングデモ環境をセットアップしました。今回「パート2」では、それを使ってできることをテストします。

私と同年代の人の中には、古典的なMLP(多層パーセプトロン)モデルから始めた人がたくさんいます。 直感的であるため、概念的に取り組みやすいからです。

それでは、AI/NNコミュニティの誰もが使用してきた標準的なデモデータを使って、Kerasの「ディープラーニングMLP」を試してみましょう。 いわゆる「教師あり学習」の一種です。 これを実行するのがどんなに簡単かをKerasレベルで見ることにします。

後で、その歴史と、なぜ「ディープラーニング」と呼ばれているのかについて触れることができます。流行語ともいえるこの分野は、実際に最近20年間で進化してきたものです。

0 0
0 59

開発者のみなさん、こんにちは!

2021年10月に4回シリーズで開催した「InterSystems IRIS 開発者向けウェビナー」第3回目の「SQLから始める機械学習 ~IntegratedMLのご紹介~」のアーカイブをYouTubeに公開いたしました。

InterSystemsは、アプリケーション開発者の方々が、IRIS data platformに保存されているデータとSQLを用いて、機械学習を容易に利用できる仕組み「IntegratedML」を開発しました。
このビデオでは、IntegratedMLの概要についてご紹介いたします。

ぜひご覧ください!

(IRIS 2021.1新機能全体のご紹介については、こちらのYouTubeをご参照ください。)

0 0
0 35

私が一番興味を持っているのは、組み込み Python におけるグローバルの使用についてです。
そこで、提供されている公式ドキュメントを確認しました。

#1 グローバルの導入
グローバルとは何かについての一般的な説明。 次の章につながっています。

#2 ObjectScript の詳細について
組み込み Python の記述はありません。
さらに先に進むと...

0 0
0 33

皆さんこんにちは。

第4回 InterSystems IRIS プログラミングコンテスト(AI/MLコンテスト) への応募は終了しました。コンテストへのご参加、またご興味をお持ちいただきありがとうございました。

この記事では、見事受賞されたアプリケーションと開発者の方々を発表します!

0 0
0 99

先週のディスカッションでは、1つのファイルのデータ入力に基づく単純なグラフを作成しました。 ご存知のように、解析して相関付けるデータファイルが複数あることがあります。 そこで今週は、perfmonデータを追加して読み込み、それを同じグラフにプロットする方法について学習しましょう。 生成したグラフをレポートやWebページで使用する可能性があるため、生成したグラフのエクスポート方法についても説明します。

Windowsのperfmonデータを読み込む

標準のpButtonsレポートから抽出されたperfmonデータは、少し独特なデータ形式です。 一見すると、かなり単純なCSVファイルで、 最初の行には列のヘッダーがあり、それ以降の行にはデータポイントが含まれています。 ただし、ここでの目的のために、値エントリーを囲む引用符をどうにかする必要があります。 標準的なアプローチを使用してファイルをPythonに解析すると、文字列オブジェクトの列ができてしまい、うまくグラフ化できません。

0 0
0 73

開発者の皆さん、こんにちは!

開発者コミュニティのYouTubeプレイリストに新しいセルフラーニングビデオを公開しましたのでお知らせします📣!

◆ IRISでPythonを使ってみよう!

※YouTubeに移動していただくとプレイリストの中から好きなビデオを選択してご覧いただけます。

1 0
0 26
記事
Minoru Horita · 2020年7月28日 2m read
Python Gateway パート V:Execute関数

この連載記事では、InterSystemsデータプラットフォーム用のPython Gatewayについて説明します。 また、InterSystems IRISからPythonコードなどを実行します。 このプロジェクトは、InterSystems IRIS環境にPythonの力を与えます。

  • 任意のPythonコードを実行する
  • InterSystems IRISからPythonへのシームレスなデータ転送
  • Python相互運用アダプタでインテリジェントな相互運用ビジネスプロセスを構築する
  • InterSystems IRISからのPythonコンテキストの保存、調査、変更、復元

その他の記事

現時点での連載計画です(変更される可能性があります)。

0 0
0 318

キーワード: Python、JDBC、SQL、IRIS、Jupyterノートブック、Pandas、Numpy、および機械学習

1. 目的

これは、デモの目的で、Jupyterノートブック内でPython 3によってIRIS JDBCドライバーを呼び出し、SQL構文でIRISデータベースインスタンスにデータを読み書きする、5分程度の簡単なメモです。

昨年、私はCacheデータベースへのPythonバインディング(セクション4.7)について簡単に触れました。 そこで、Pythonを使ってIRISデータベースに接続し、そのデータをPandasデータフレームとNumPy配列に読み込んで通常の分析を行ってから、事前処理済みまたは正規化されたデータをML/DLパイプラインに通すためにIRISに書き込む作業においてのオプションと議論について要約しましょう。

すぐに思い浮かぶ簡単なオプションがいくつかあります。

2 0
0 277
記事
Toshihiko Minamoto · 2022年11月8日 9m read
Django 入門 パート 2

パート 1 では、Django で新しいプロジェクトを開始する方法を紹介し、新しいモデルの定義方法と既存のモデルの追加方法を説明しました。 今回は、初期状態で利用可能な管理者パネルとどのように役立つかについて説明します。 _重要な注意事項: この記事のアクションを繰り返しても、動作しません。 記事の途中で、django-iris プロジェクトにいくつか修正を行い、InterSystems が作成した DB-API ドライバーの課題もいくつか修正しました。このドライバーは現在の開発中であり、将来的に、より安定したドライバーが提供されると思います。 この記事では、すべてを実行した場合にどのようになるかを説明しているにすぎません。_

0 0
0 17
記事
Minoru Horita · 2020年8月6日 2m read
Python Gateway パート VI: Jupyter

この連載記事では、InterSystemsデータプラットフォーム用のPython Gatewayについて説明します。 また、InterSystems IRISからPythonコードなどを実行します。 このプロジェクトは、InterSystems IRIS環境にPythonの力を与えます。

  • 任意のPythonコードを実行する
  • InterSystems IRISからPythonへのシームレスなデータ転送
  • Python相互運用アダプタでインテリジェントな相互運用ビジネスプロセスを構築する
  • InterSystems IRISからのPythonコンテキストの保存、調査、変更、復元

その他の記事

現時点での連載計画です(変更される可能性があります)。

はじめに

Jupyter Notebookは実コード、数式、図、説明文を含むドキュメントを作成および共有できるオープンソースのWebアプリケーションです。

この拡張機能を使用すると、InterSystems IRIS BPLのプロセスをJupyterノートブックとして参照および編集できます。

0 0
0 121

この短い記事では、マシンにPythonをセットアップしなくて済むように、dockerコンテナでYapeを実行する方法について説明します。

このシリーズの前回の記事からしばらく時間が経っているため、簡単に振り返ってみましょう。

まず、matplotlibで基本的なグラフを作成する方法について話しました。 そして、bokehを使った動的グラフについて紹介しました。 最後にパート3では、monlblデータを使ったヒートマップの生成について説明しました。

0 0
0 32

InterSystems IRIS 2021.2 のバージョンより、Embedded Python を使用できるようになりました。

Embedded Python で Excel のデータを IRIS グローバルに格納する方法 では pandas.DataFrame のデータを InterSystems IRIS グローバルに保存する方法をご紹介しました。
こちらの記事では、その逆の「InterSystems IRIS グローバル($LB) を pandas.DataFrame に変換する」方法をご紹介します。

1 0
0 86

開発者の皆さん、こんにちは!

開発者コミュニティのYouTubeプレイリストにEmbedded Pythonの新しいセルフラーニングビデオを公開しましたのでお知らせします📣!

◆ Embedded Pythonでデータベースプログラミング:オブジェクトアクセス編

※YouTubeに移動していただくとプレイリストの中から好きなビデオを選択してご覧いただけます。

0 0
0 15

NoSQLデータベースという言葉を聞かれたことがあると思います。色々な定義がありますが、簡単に言えば、文字通りSQLを使わない、つまりリレーショナルデータベース(RDB)以外のデータベースのことを指すのが一般的です。

InterSystems IRIS Data Platformでは、テーブルを定義してSQLでデータにアクセスできます。ですから、InterSystems IRIS Data Platformは厳密にNoSQLデータベースというわけではありません。しかし、InterSystems IRISの高パフォーマンスを支える「グローバル」は、40年も前からInterSystemsのコア技術として、現代で言うNoSQLデータベースを提供してきました。本稿では、InterSystems IRISの「グローバル」でグラフ構造を作り、それをPythonでアクセスする方法を紹介します。

本稿で説明する内容は動画でも公開しています。ぜひご覧ください。

1 0
0 554
記事
Toshihiko Minamoto · 2022年1月27日 11m read
Python用IRISネイティブAPI

はじめに

バージョン2019.2より、InterSystems IRISは、高性能データアクセス手法としてPython用のネイティブAPIを提供してきました。 ネイティブAPIを使用すると、ネイティブのIRISデータ構造と直接対話することができます。

0 0
0 77

開発者のみなさん、こんにちは!

2022年3月9日開催「InterSystems Japan Virtual Summit 2022」のセッション「Embedded Python で広がる InterSystems IRIS の世界」のアーカイブを YouTube に公開いたしました。

(プレイリストはこちら


今や Python は最も人気のあるプログラミング言語の一つです。シンプルで機能的なコードが書けることや、なんでも揃う豊富なライブラリを利用できることなどが人気の理由です。

Embedded Python は、IRIS に Python のランタイムを組み込み、ルーチンやメソッドを Python で書けるようにする画期的な機能です。

IRIS 開発者の方にとって、広大な Python の世界が身近になります。InterSystems IRIS の新しいカタチを是非ご覧ください。

0 0
0 60

みなさん、こんにちは。 今回は ML モデルを IRIS Manager にアップロードしてテストしようと思います。

注意: Ubuntu 18.04、Apache Zeppelin 0.8.0、Python 3.6.5 で以下を実行しました。

はじめに

最近では実にさまざまなデータマイニングツールを使用して予測モデルを開発し、これまでにないほど簡単にデータを分析できるようになっています。 InterSystems IRIS Data Platform はビッグデータおよび高速データアプリケーション向けに安定した基盤を提供し、最新のデータマイニングツールとの相互運用性を実現します。

0 0
0 96

開発者のみなさん、こんにちは!

前回のウェビナー開催から少し時間がたってしまいましたが、2022年06月28日 (火曜日) 12時半~ 30分程度のウェビナーを開催します!

今回は、新たに開講する「Embedded Python トレーニングコース」の内容をご紹介するウェビナーです。

新規開講コースでは、

  • Python開発者からみた Embedded Python でできること
  • IRIS開発者からみた Embedded Python でできること

を実際の操作を通してご理解いただけるよう、コースを3種類に分けております。

ウェビナーでは、

0 0
0 56

2019年 10月 17日

Anton Umnikov
InterSystems シニアクラウドソリューションアーキテクト
AWS CSAA、GCP CACE

AWS Glue は、完全に管理された ETL (抽出、変換、読み込み) サービスです。データの分類、クリーンアップ、強化、そして様々なデータストア間でデータを確実に移動させるという作業を簡単にかつコスト効率の良いかたちで行えるようにするものです。

0 0
0 302

開発者の皆さん、こんにちは!

最近リリースされた InterSystems IRIS 2021.2 の目玉機能のひとつが Embedded Pythonです。Embedded Pythonは、PythonのランタイムをIRISに組み込むことによって、IRISのメソッドをPythonで記述したり、PythonのコードからIRISのクラスにアクセスしたりなどなど、IRISのObjectScriptとPythonとで相互に呼び出しを行なえる機能です。

しかも、Pythonのランタイムを埋め込んでいるため、ネットワークのオーバーヘッドがなく、パフォーマンスへの影響は最小限です。

IRISのプログラマの方には、Pythonの豊富なライブラリをストレスなく利用して頂けます。

Pythonのプログラマの方には、ObjectScriptを学ぶことなく、IRISの高速なデータベースやインターオペラビリティ機能などをストレスなく活用して頂けます。

今回の記事では、Embedded Pythonの機能をほんの一部だけ紹介します。

4 0
0 479

1. interoperability-embedded-python

この概念実証では、embedded PythonIRIS 相互運用フレームワークをどのように使用できるかについて示すことを目的としています。

1.1. 目次

1.2. 例

import grongier.pex
import iris
import MyResponse

class MyBusinessOperation(grongier.pex.BusinessOperation):

    def OnInit(self):
        print("[Python] ...MyBusinessOperation:OnInit() is called")
        self.LOGINFO("Operation OnInit")
        return

    def OnTeardown(self):
        print("[Python] ...MyBusinessOperation:OnTeardown() is called")
        return

    def OnMessage(self, messageInput):
        if hasattr(messageInput,"_IsA"):
            if messageInput._IsA("Ens.StringRequest"):
                self.LOGINFO(f"[Python] ...This iris class is a Ens.StringRequest with this message {messageInput.StringValue}")
        self.LOGINFO("Operation OnMessage")
        response = MyResponse.MyResponse("...MyBusinessOperation:OnMessage() echos")
        return response

1.3. コンポーネントの登録

ObjectScript は不要です

0 0
0 45

キーワード: Pandasデータフレーム、IRIS、Python、JDBS

目的

PandasデータフレームはEDA(探索的データ分析)に一般的に使用されるツールです。 MLタスクは通常、データをもう少し理解することから始まります。 先週、私はKaggleにあるこちらのCovid19データセットを試していました。 基本的に、このデータは1925件の遭遇の行と231列で構成されており、タスクは、患者(1つ以上の遭遇レコードにリンク)がICUに入室するかどうかを予測するものです。 つまりこれは、いつものようにpandas.DataFrameを使用して、まず簡単にデータを確認する、通常の分類タスクです。

0 0
0 97

開発者の皆さん、こんにちは!

PythonでExcelからPDFへ変換を行うには、pywinを使うとできるらしいので、IRISにあるデータをDataframeに設定した後Excelに出力し、ExcelからPDFに変換する流れを、Embedded Pythonで試してみました。

メモ:pywinはWindows環境下で動くモジュールのようです。

Excelに出力するデータですが、例では、SELECTの結果をDataframeに格納する方法を利用しています。グローバル変数の情報をDataframeに格納する方法については、以下の記事で詳しくご紹介しています。ぜひご参照ください。
Embedded Python で IRIS グローバル($LB) を Pandas Dataframe に変換する方法

0 0
0 290

開発者の皆さん、こんにちは🌂 今年は早い梅雨入りでした ☔

さて、新しい✨ 実行/開発環境テンプレートを作成しました。 Docker 🐳、docker-compose 、git がインストールされていれば、すぐにお試しいただけます。ぜひご利用ください!

今回は、ご存知の方が多いと思われる(?)某アニメの登場人物を使った人物相関図をテーマに【キーバリュー形式で IRIS に登録してグラフ構造で表示してみた】を体験できるテンプレートです(テンプレートは、Python/Node.js/Java からお試しいただける環境をご用意しています)。

0 0
0 148
記事
Mihoko Iijima · 2022年2月4日 7m read
Embedded Python 試してみました

開発者の皆さん、Python好きの皆さん、こんにちは!

ドキュメントをみながら IRIS 2021.2 に追加された Embedded Python を試してみました!

IRIS にログインしてるのに Pythonシェルに切り替えできて Python のコードが書けたり、Python で import iris するだけで SQL を実行できたりグローバルを操作できるので、おぉ!✨という感じです。

ぜひ、みなさんも体感してみてください!

では早速。

まず、IRISにログインします。Windows ならターミナルを開きます。Windows 以外は以下実行します。

4 0
0 277

IRIS 2022.1では Embedded Python が導入されました。Embedde Python によって、IRISの独自言語である ObjectScript と Python の親和性の良さをぜひ実感いただけると嬉しいです。今回の記事では、日本語PDFをPythonライブラリを利用して作成し、さらに ObjectScript と融合するところまで見ていただこうと思います。

2 0
0 67