記事
· 2024年10月13日 10m read
IRIS開発における生成AIの活用について

はじめに

生成AIを活用したアプリケーション開発は、Python、JavaScriptなどのメジャー言語による体験記事がよく見られます。一方、IRISのObjectScriptの開発に言及された記事は比較的少ないのが現状です。そこで、本記事では生成AIがObjectScriptの開発にどこまで活用できるのかを検証しました。

特にDevOpsのプロセスにおいて、生成AIは様々なシーンでの活用が期待できます。今回は開発工程に注目し、以下の観点から生成AIの有効性を調査しました。

  • 開発
    • コードの自動生成
    • 環境構築のアシスタント(テーブルの作成)
  • 検証
    • テストデータ生成のサポート

環境

本記事の検証は以下の環境で行いました。

開発環境

12 0
0 221

これは InterSystems FAQ サイトの記事です。

ObjectScriptの%Netパッケージのライブラリクラスを利用して、ファイルを他のサーバーにアップロードすることができます。

以下のCurl コマンドと同じことを ObjectScript で実現する方法を紹介します。

0 0
0 82

Django フレームワークは長年学習したいと思ってきましたが、いつも他の差し迫ったプロジェクトが優先されてきました。 多くの開発者と同様に、機械学習においては Python を使用していますが、初めてウェブプログラミングについて学習したころは、PHP がまだまだ優勢でした。そのため、機械学習の作品を公開する目的でウェブアプリケーションを作成するための新しい複雑なフレームワークを選択する機会が訪れても、私は依然として PHP に目を向けていました。 ウェブサイトの構築には Laravel と呼ばれるフレームワークを使用してきましたが、この PHP フレームワークから最新の MVC(モデルビューコントローラー)というウェブプログラミングのパターンに出会いました。 さらに複雑なことに、私は最新の JavaScript フレームワークを使用してフロントエンドを構築するのを好んでいます。 React を使用するのがより一般的のようですが、私は Vue.js に一番慣れているため、このプロジェクトではそれを使用することにしました。

なぜ複雑なフレームワークを使用するのでしょうか? Django、Laravel、React、または Vue などのフレームワークを学習する際の最大の難関は何でしょうか?

0 0
0 53

django_logo

説明

これは、ネイティブウェブアプリケーションとして IRIS にデプロイできる Django アプリケーションのテンプレートです。

インストール

  1. リポジトリをクローンする
  2. 仮想環境を作成する
  3. 要件をインストールする
  4. docker-compose ファイルを実行する
git clone
cd iris-django-template
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
docker-compose up

使用法

ベース URL は http://localhost:53795/django/ です。

0 0
0 27
記事
· 2025年9月3日 2m read
大量データをJSON形式で渡す方法

これは InterSystems FAQ サイトの記事です。

ダイナミックオブジェクトの%ToJSONメソッドを利用することで簡単にJSONデータを送信することができます。

但し、標準的な方法では、出力するJSONのデータがIRIS文字列の最大長(約32万文字 正確には$SYSTEM.SYS.MaxLocalLength()が返す値)を超えると<MAXLENGTH>エラーとなります。

これを回避するためには、文字列として返すのではなく、%ToJSONメソッドの出力先としてStreamを指定し、その結果作成されたそのStreamデータを順次読み取って、出力先に書き出すようにする必要があります。

以下のように処理できます。

0 0
0 17