こんにちは、皆さま。
業務でIRISを用いて開発を行っている者です。

技術文書ライティングコンテストという事で、私からはAWS環境を用いたCI/CDの仕組みについてご紹介します。

CI/CDとは「Continuous Integration(継続的インテグレーション)/ Continuous Delivery(継続的デリバリー)」の略称で、
詳細はネットをググると色々出てくると思いますが、私としてはリポジトリに格納されたものを自動で品質保証して、
問題なければ自動でデプロイしてくれる一連の仕組み
だと理解しています。

という事で、その第一歩はIRISのソースコードをgitで管理することです。
pythonで作成したテストプログラムを用意しました。

12 0
0 277

キーワード: IRIS、IntegratedML、Flask、FastAPI、Tensorflow Serving、HAProxy、Docker、Covid-19

目的:

過去数か月に渡り、潜在的なICU入室を予測するための単純なCovid-19 X線画像分類器やCovid-19ラボ結果分類器など、ディープラーニングと機械学習の簡単なデモをいくつか見てきました。 また、ICU分類器のIntegratedMLデモ実装についても見てきました。 「データサイエンス」の旅路はまだ続いていますが、「データエンジニアリング」の観点から、AIサービスデプロイメントを試す時期が来たかもしれません。これまでに見てきたことすべてを、一式のサービスAPIにまとめることはできるでしょうか。 このようなサービススタックを最も単純なアプローチで達成するには、どういった一般的なツール、コンポーネント、およびインフラストラクチャを活用できるでしょうか。

対象範囲

対象:

ジャンプスタートとして、docker-composeを使用して、次のDocker化されたコンポーネントをAWS Ubuntuサーバーにデプロイできます。

1 0
0 397

私たちのほとんどは、多かれ少なかれDockerに慣れ親しんでいます。 Dockerを使用している人たちは、ほとんどのアプリケーションを簡単にデプロイし遊んで、何かを壊してしまってもDockerコンテナを再起動するだけでアプリケーションを復元できる点を気に入っています。

InterSystems も Docker を気に入っています。

InterSystems OpenExchange プロジェクトには、InterSystems IRISのイメージを簡単にダウンロードして実行できるDockerコンテナで実行するサンプルが多数掲載されています。また、Visual Studio IRISプラグインなど、その他の便利なコンポーネントもあります

0 0
0 174

​​​​​​この連載記事では、InterSystemsの技術とGitLabを使用したソフトウェア開発に向けていくつかの可能性のあるアプローチを紹介し、説明したいと思います。以下のようなトピックについて取り上げます。

0 0
0 154

この連載記事では、InterSystemsの技術とGitLabを使用したソフトウェア開発に向けていくつかの可能性のあるアプローチをを紹介し、議論したいと思います。 今回は以下のようなトピックを取り上げます。

0 0
0 451

この連載記事では、InterSystemsの技術とGitLabを使用したソフトウェア開発に向けて実現可能な複数の手法を紹介し、議論したいと思います。 次のようなトピックについて説明します。

0 0
0 594

1. 初めに

IRISでは、複数ノードでクラスターを構成し、ワークロードのスケールアウト、データボリュームのスケールアウトやトランザクション処理と分析処理を異なるノードで処理するマルチワークロードを実現しています。

しかし、クラスターを構成するための設定は、ノード数が増えるにつれ煩雑になり、それらを人手の作業に全て委ねると設定ミス等を招きやすいといえます。

また、クラスタの構成を処理負荷の増加に基づいて拡張する、または逆に縮小する、あるいは、データ冗長性を追加するためにミラーリングの構成を追加するなど構成変更は、想定するより多いかもしれません。

しかもクラスタ毎に同様の設定を毎回行うとなると、人手による作業では、煩雑性だけでなく俊敏性に欠けると言わざるを得ません。

そこで、IRISには、クラスター構成作業を自動化する新しいツールICM(InterSystems Cloud Manager)が用意されました。

ここでは、ICMを使用したクラウド上でのIRIS構成の自動化の手順について説明します。

2. 事前に準備するもの

0 0
0 268