記事 Toshihiko Minamoto · 2021年8月3日 6m read IRIS と Python でチャットボットを作成する IRIS と Python でチャットボットを作成する この記事では、InterSystems IRIS データベースを Python と統合して自然言語処理(NLP)の機械学習モデルを提供する方法を説明します。 Python を使用する理由 世界的に広く採用され使用されている Python には素晴らしいコミュニティがあり、様々なアプリケーションをデプロイするためのアクセラレータ/ライブラリが豊富に提供されています。 関心のある方は https://www.python.org/about/apps/ をご覧ください。 #AI #Python #フレームワーク #機械学習 #InterSystems IRIS #その他 Open Exchange app 0 0 0 225
記事 Toshihiko Minamoto · 2021年8月4日 4m read チャットボットの言語学習にご協力を! 皆さんこんにちは! よろしければ、ボットが対話できるようになるようお手伝いいただけませんか? チャットボットはこちらからアクセスしてください: Help my chatbots to talk! なんだ、そのチャットボットはスマートではないのですか? #AI #Python #InterSystems IRIS #その他 Open Exchange app 0 0 0 63
記事 Toshihiko Minamoto · 2021年11月18日 13m read Python 3をHealthShareにバインディングした深層学習デモキット(パート1) Python 3をHealthShareにバインディングした深層学習デモキット(パート1)キーワード: Anaconda、Jupyterノートブック、TensorFlow GPU、ディープラーニング、Python 3、HealthShare 1. 目的 この「パート1」では、Python 3をHealthShare 2017.2.1インスタンスにバインドして、「単純」かつ一般的なディープラーニングデモ環境をセットアップする方法を段階的に簡単に説明します。 私は手元にあるWin10ノートパソコンを使用しましたが、このアプローチはMacOSとLinuxでも同じように実装できます。 先週、PYPL Indexにおいて、Pythonが最も人気のある言語としてJavaを超えたことが示されました。 TensorFlowも研究や学術の分野において非常に人気のある強力な計算エンジンです。 HealthShareは、ケア提供者に患者の統一介護記録を提供するデータプラットフォームです。 #AI #Python #機械学習 #HealthShare 0 0 0 51
記事 Toshihiko Minamoto · 2021年11月25日 17m read HealthShareにバインディングしたPython 3を使用したディープラーニングデモを実行する(パート2) キーワード: Jupyterノートブック、TensorFlow GPU、Keras、ディープラーニング、MLP、HealthShare 1. 目的 前回の「パート1」では、ディープラーニングデモ環境をセットアップしました。今回「パート2」では、それを使ってできることをテストします。 私と同年代の人の中には、古典的なMLP(多層パーセプトロン)モデルから始めた人がたくさんいます。 直感的であるため、概念的に取り組みやすいからです。 それでは、AI/NNコミュニティの誰もが使用してきた標準的なデモデータを使って、Kerasの「ディープラーニングMLP」を試してみましょう。 いわゆる「教師あり学習」の一種です。 これを実行するのがどんなに簡単かをKerasレベルで見ることにします。 後で、その歴史と、なぜ「ディープラーニング」と呼ばれているのかについて触れることができます。流行語ともいえるこの分野は、実際に最近20年間で進化してきたものです。 #AI #Python #初心者 #機械学習 #HealthShare 0 0 0 30
記事 Toshihiko Minamoto · 2021年11月30日 16m read Covid-19に感染した胸部X線画像分類とCT検出デモを実行する キーワード: COVID-19、医用画像、ディープラーニング、PACSビューア、HealthShare。 目的 私たちは皆、この前例のないCovid-19パンデミックに悩まされています。 現場のお客様をあらゆる手段でサポートする一方で、今日のAI技術を活用して、Covid-19に立ち向かうさまざまな前線も見てきました。 昨年、私はディープラーニングのデモ環境について少し触れたことがあります。 この長いイースターの週末中に、実際の画像を扱ってみてはどうでしょうか。Covid-19に感染した胸部X線画像データセットに対して簡単な分類を行うディープラーニングモデルをテスト実行し、迅速な「AIトリアージ」や「放射線科医の支援」の目的で、X線画像やCT用のツールがdockerなどを介してクラウドにどれほど素早くデプロイされるのかを確認してみましょう。 これは、10分程度の簡易メモです。学習過程において、最も単純なアプローチでハンズオン経験を得られることを願っています。 #AI #機械学習 #HealthShare 0 0 0 66
記事 Toshihiko Minamoto · 2021年12月7日 31m read MLとIntegratedMLでCovid-19のICU入室予測を実行する(パート1) キーワード: IRIS、IntegratedML、機械学習、Covid-19、Kaggle 目的 最近、Covid-19患者がICU(集中治療室)に入室するかどうかを予測するKaggleデータセットがあることに気づきました。 231列のバイタルサインや観測で構成される1925件の遭遇記録が含まれる表計算シートで、最後の「ICU」列では「Yes」を示す1と「No」を示す0が使用されています。 既知のデータに基づいて、患者がICUに入室するかどうかを予測することがタスクです。 このデータセットは、「従来型ML」タスクと呼ばれるものの良い例のようです。 データ量は適切で、品質も比較的適切なようです。 IntegratedMLデモキットに直接適用できる可能性が高いようなのですが、通常のMLパイプラインと潜在的なIntegratedMLアプローチに基づいて簡易テストを行うには、どのようなアプローチが最も単純なのでしょうか。 範囲 次のような通常のMLステップを簡単に実行します。 #AI #IntegratedML #SQL #機械学習 #InterSystems IRIS Open Exchange app 0 0 0 51
記事 Toshihiko Minamoto · 2022年2月14日 19m read 統合AIデモサービススタックにML/DLモデルをデプロイする キーワード: IRIS、IntegratedML、Flask、FastAPI、Tensorflow Serving、HAProxy、Docker、Covid-19 目的: 過去数か月に渡り、潜在的なICU入室を予測するための単純なCovid-19 X線画像分類器やCovid-19ラボ結果分類器など、ディープラーニングと機械学習の簡単なデモをいくつか見てきました。 また、ICU分類器のIntegratedMLデモ実装についても見てきました。 「データサイエンス」の旅路はまだ続いていますが、「データエンジニアリング」の観点から、AIサービスデプロイメントを試す時期が来たかもしれません。これまでに見てきたことすべてを、一式のサービスAPIにまとめることはできるでしょうか。 このようなサービススタックを最も単純なアプローチで達成するには、どういった一般的なツール、コンポーネント、およびインフラストラクチャを活用できるでしょうか。 対象範囲 対象: ジャンプスタートとして、docker-composeを使用して、次のDocker化されたコンポーネントをAWS Ubuntuサーバーにデプロイできます。 #AI #IntegratedML #コンテナ化 #機械学習 #継続的インテグレーション #継続的デリバリー #開発者コミュニティ公式 Open Exchange app 1 0 0 62
記事 Toshihiko Minamoto · 2022年1月25日 9m read IRISデータベースへのPython ODBC接続 - 2つ目の簡易メモ キーワード: PyODBC、unixODBC、IRIS、IntegratedML、Jupyterノートブック、Python 3 目的 数か月前、私は「IRISデータベースへのPython JDBC接続」という簡易メモを書きました。以来、PCの奥深くに埋められたスクラッチパッドよりも、その記事を頻繁に参照しています。 そこで今回は、もう一つの簡易メモで「IRISデータベースへのPython ODBC接続」を作成する方法を説明します。 ODBCとPyODCBをWindowsクライアントでセットアップするのは非常に簡単なようですが、Linux/Unix系サーバーでunixODBCとPyODBCクライアントをセットアップする際には毎回、どこかで躓いてしまいます。 バニラLinuxクライアントで、IRISをインストールせずに、リモートIRISサーバーに対してPyODBC/unixODBCの配管をうまく行うための単純で一貫したアプローチがあるのでしょうか。 #AI #分析 #機械学習 #InterSystems IRIS 0 0 0 102