開発者の皆さん、こんにちは。

先日の 第3回InterSystemsJapan開発者コミュニティミートアップでは、Google Colab を使ったワークショップを実施しました。
その際、解説を読みながら、その場でコードを実行できる Jupyter Notebook の良さを改めて実感しました。

1 0
0 19

カスタマーサポートの質問は、構造化データ(オーダー、製品 🗃️)、非構造化知識(ドキュメント/よくある質問 📚)、およびライブストリーム(出荷更新 🚚)と多岐にわたります。 この投稿では、以下を使用して、3つすべてに対応するコンパクトなAIエージェントを作成します。

  • 🧠 Python + smolagentsは、エージェントの「頭脳」を構成します
  • 🧰 SQLベクトル検索(RAG)、およびInteroperabilityのためのInterSystems IRIS(モック配送状況API)

0 0
0 12

前の記事では、smolagentsとInterSystems IRISを使用して、SQL、ベクトル検索を使用したRAGinteroperabilityを組み合わせたカスタマーサービスAIエージェントをビルドしました。

その際、LLMと埋め込み表現のためにクラウドモデル(OpenAI)を使用しました。

今回はさらに一歩進めます。Ollamaを利用して、同じエージェントをローカルモデルで実行します

0 0
0 8